Publications
Preprints
Biscione, V., Yin, D., Malhotra, G., Dujmovic, M., Montero, M.L., Puebla, G., Adolfi, F., Heaton, R.F., Hummel, J.E., Evans, B.D. and Habashy, K. (2024). MindSet: Vision. A toolbox for testing DNNs on key psychological experiments. arXiv
Puebla G. & Bowers, J. S. (2024). Visual Reasoning in Object-Centric Deep Neural Networks: A Comparative Cognition Approach. arXiv
Puebla G. & Doumas, L. A. A. (2022). Learning Relational Rules from Rewards. arXiv
Journal articles
Fong F. T. K., Puebla, G.& Nielsen, M. (2024). The Role of Conventionality and Design in Children’s Function Judgments About Malfunctioning Artifacts. Journal of Experimental Child Psychology, 240, 105835. journal (open access)
Bowers J. S., Malhotra, G., Adolfi, F. G., Dujmović, M., Montero, M. L., Biscione, V., Puebla, G., Hummel, J. & Heaton, R. F. (2023). On the importance of severely testing deep learning models of cognition. Cognitive Systems Research, 82, 101158. journal
Bowers J. S., Malhotra, G., Dujmović, M., Montero, M. L., Tsvetkov, C., Biscione, V., Puebla, G., Adolfi, F., Hummel, J. E., Heaton, R., Evans, B. D., Mitchell, J. & Blything, R. (2023). Clarifying status of DNNs as models of human vision. Behavioral and Brain Sciences, 46, e415. journal
Bowers J. S., Malhotra, G., Dujmović, M., Montero, M. L., Tsvetkov, C., Biscione, V., Puebla, G., Adolfi, F., Hummel, J. E., Heaton, R., Evans, B. D., Mitchell, J. & Blything, R. (2023). Deep Problems with Neural Network Models of Human Vision. Behavioral and Brain Sciences, 46, e385. journal
Puebla G. & Bowers, J. S. (2022). Can deep convolutional neural networks support relational reasoning in the same-different task? Journal of Vision, 22(11), 1-18. journal (open access)
Doumas L. A. A., Puebla, G., Martin, A. E., & Hummel, J. E. (2022). A theory of relation learning and cross-domain generalization. Psychological Review, 129(5), 999–1041. pdf
Puebla G., Martin, A. E. & Doumas, L. A. A. (2021). The relational processing limits of classic and contemporary neural network models of language processing. Language, Cognition and Neuroscience, 36(2), 240-254. journal
Chaigneau S. E., Puebla, G. & Canessa, E. C. (2016). Why the designer’s intended function is central for proper function assignment and artifact conceptualization: Essentialist and normative accounts. Developmental Review, 41, 38-50. journal
Puebla G. & Chaigneau, S. E. (2014). Inference and coherence in causal-based artifact categorization. Cognition, 130(1), 50-65. journal
Chaigneau S. E. & Puebla, G. (2013). The Proper Function of Artifacts: Intentions, Conventions and Causal Inferences. Review of Philosophy and Psychology, 4(3), 391-406. journal
Conference proceedings
Biscione V., Yin, D., Malhotra, G., Dujmović, M., Montero, M. L., Puebla, G., Adolfi, F. G., Tsvetkov, C., Heaton, R. F., Hummel, J., Evans, B. D. & Bowers, J. S. (2023). Introducing the MindSet benchmark for comparing DNNs to human vision. 2023 Conference on Cognitive Computational Neuroscience. pdf
Puebla G. & Bowers, J. S. (2023). The role of object-centric representations, guided attention, and external memory on generalizing visual relations. 2023 Conference on Cognitive Computational Neuroscience. pdf
Puebla G. & Bowers, J. S. (2021). Can Deep Convolutional Neural Networks Learn Same-Different Relations? Proceedings of the 43rd Annual Meeting of the Cognitive Science Society, 1747-1752. pdf
Doumas L. A., Puebla, G., Martin, A. E. & Hummel, J. E. (2020). Relation learning in a neurocomputational architecture supports cross-domain transfer. Proceedings of the 42nd Annual Meeting of the Cognitive Science Society, 932-937. pdf
Doumas L. A. A., Puebla, G., Hummel, J. E. & Martin, A. E. (2019). Predicate learning via neural oscillations supports one-shot generalization between video games. 2019 Conference on Cognitive Computational Neuroscience. pdf
Puebla G. & Chaigneau, S. E. (2019). A Piecemeal Processing Strategy Model for Causal-Based Categorization. Proceedings of the 41st Annual Virtual Meeting of the Cognitive Science Society, 2613-2619. pdf
Puebla G., Doumas, L. A. & Martin, A. E. (2019). The relational processing limits of classic and contemporary neural network models of language processing. 2019 Conference on Cognitive Computational Neuroscience. pdf
Doumas L. A., Hamer, A., Puebla, G. & Martin, A. E. (2017). A theory of the detection and learning of structured representations of similarity and relative magnitude. Proceedings of the 39th annual conference of the cognitive science society, 1955-1960. pdf
Puebla-Ramírez G. & Chaigneau, S. (2011). Is the Centrality of Design History Function an Effect of Causal Knowledge? Proceedings of the 33rd Annual Meeting of the Cognitive Science Society, 1533-1538. pdf