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Abstract

The ability of neural networks to perform relational rea-
soning is a matter of long-standing controversy. Recently,
some researchers have argued that (1) classic PDP mod-
els can learn relational structure and (2) the successes
of deep learning suggest that structured representations
are unnecessary to explain human language. In this study
we tested a classic PDP model and a contemporary deep
learning model for text processing. Both models were
trained to answer questions about stories based on the
thematic roles that several concepts played on the sto-
ries. In three critical test we varied the statistical struc-
ture of new stories while keeping their relational structure
intact with respect to the training data. Both models per-
formed poorly in our tests. These results cast doubts on
the suitability of traditional neural networks for explaining
phenomena based on relational reasoning.
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Introduction

The ability to represent and reason in terms of the relations
between objects plays a crucial role across human cognition
(Halford, Wilson, & Phillips, 2010). Several computational
models in cognitive science have sought to capture its main
characteristics and development (for a review see, Gentner &
Forbus, 2011).

These models differ in their representational assumptions.
In the canonical view, relational reasoning entails using pred-
icate representations. A predicate is an abstract structure
that can be dynamically bound to an argument, specifying a
set of properties about that argument (Doumas & Hummel,
2005). For example, predator(x) specifies a series of proper-
ties about the variable x (e.g., carnivore, hunts, etc.). Pred-
icate representations have two main attributes. In the first
place, predicates maintain role-filler independence in that at
least some aspect of the semantic content of the predicate is
invariant with respect to its arguments. For example, preda-
tor(fox) and predator(lynx) will specify the same set of proper-
ties (e.g., carnivore, hunts, etc.) about the objects fox and
lynx. In the second place, predicates can be dynamically
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bound to arguments, namely, fillers can be assigned and reas-
signed to different roles as needed during processing. Models
based on predicates successfully account for a wide variety
of phenomena in the relational thinking literature (for a review
see Forbus, Liang, & Rabkina, 2017).

By contrast, traditional Parallel Distributed Processing
(PDP) models explicitly eschew structured representations
(see, e.g., Rogers & McClelland, 2014). In these models
representations are patterns of activation across a layer of
units. These representations are unstructured because re-
lational roles and objects are not independently represented,
but instead are compressed together into a fixed-sized vec-
tor. Recently, Rogers and McClelland (2014) have proposed
that the gestalt models of text comprehension (St. John,
1992; St. John & McClelland, 1990) exhibit successful ef-
fective role-to-filler binding. Some of this optimism is based
on the achievements of deep learning architectures in natural
language processing. For example, Rabovsky, Hansen, and
McClelland (2018) argue that the success of Google’s neural
machine translation (GNMT) system (Wu et al., 2016) implies
that structured representations are an obstacle to capturing
the regularities of human language.

In the present study, we tested the Story Gestalt (SG)
model (St. John, 1992) and a Sequence-to-Sequence with At-
tention (Seqg2seq+Attention) model (Bahdanau, Cho, & Ben-
gio, 2015)—the architecture behind the GNMT system—in a
series of tasks requiring binding a number of concepts to sev-
eral roles in a story.

Task overview

Our task, based on the original materials of St. John (1992),
consists on answering questions about stories generated by
a series of (5) scripts. All the scripts describe events as
a sequence of propositions where several concepts play dif-
ferent thematic roles: agent-1, agent-2, topic, patient-theme,
recipient-destination, location, manner and attribute. As an il-
lustrative example, consider the Restaurant script (Table 1).
This script describes an event where two people go to a
restaurant. Each sentence of the Restaurant script defines
fillers for some roles. To generate a specific instance of a
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Restaurant script (i.e., a Restaurant story) the roles are given
values corresponding to specific concepts. Table 2 presents
an example of an instantiated Restaurant story in a pseudo-
natural language format. Note that, as illustrated in Table 1,
our scripts produce stories with no repeated topic concepts
across propositions.

Table 1: Restaurant Script.

Script

1. [agent-1] and [agent-2] decided to go to restaurant

2. Restaurant quality [expensive/cheap]

3. Distance to restaurant [far/near]

4. [agent-1/agent-2] ordered [cheap-wine/expensive-wine]
5

6

7

. [agent-1/agent-2] paid bill

. [agent-1/agent-2] tipped waiter [big/small/not]

. Waiter gave change to [agent-1/agent-2]
Concept restrictions
The roles agent-1 and agent-2 are never ‘Lois’ or ‘Albert’
Deterministic rule
The quality of the restaurant determines the distance com-
pletely: expensive — far, cheap — near

Each script implements a tree structure where each node
represents a proposition and each branch of the tree repre-
sents a story. The scripts also implement rules that specify
the probability of transitioning from one node to another con-
ditioned on the value of a character or location role. For ex-
ample, a rule in the Restaurant script (see Table 1) specifies
that if the restaurant is expensive, it will be located far away.

We had two training conditions. In the concept restricted
condition, some character or object names were never used
in specific scripts. For example, in the Restaurant stories the
characters Lois and Albert were never used to fill the roles
agent-1 or agent-2. In the concept unrestricted condition all
concepts were used in all stories. Stories were generated as
follows: (1) a script is chosen at random, (2) a sequence of
propositions is generated by traversing the tree structure of
a scrip and (3) character and vehicles names are given spe-
cific values (respecting the script’s deterministic rule and the
script’'s concept restrictions if necessary).

To get a criterion for each model’s performance we de-
signed a baseline test. We presented the models trained in the
unrestricted condition with concept unrestricted stories and
asked questions about them. The questions were the con-
cepts filling the topic role. The correct answer was the full
proposition in which the topic concept was involved. For ex-
ample, if a proposition in a restaurant story stated that the
“waiter gave change to Anne” and the model was asked about
the “gave” proposition the correct answer was “waiter gave
change to Anne”. Because in our stories there was no re-
peated topics the correct answer was unequivocal. Table 2
presents an example of a Restaurant baseline story, its ques-
tions and correct answers.
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Table 2: Example of a Baseline Story (Restaurant).
Story
1. [Anne] and [Gary] decided to go to restaurant
2. Restaurant quality [expensive]
3. Distance to restaurant [far]
4. [Anne] ordered [cheap-wine]
5
6
7

. [Anne] paid bill

. [Anne] tipped waiter [big]

. Waiter gave change to [Anne]
Question Criteria

decided [Anne] and [Gary] decided to go to restaurant
quality Restaurant quality [expensive]

distance Distance to restaurant [far]

ordered  [Anne] ordered [cheap-wine]

paid [Anne] paid bill

tipped [Anne] tipped waiter [big]
gave Waiter gave change to [Anne]
Models

Story gestalt model The SG model (St. John, 1992, see
Figure 1) integrates a sequence of propositions into a dis-
tributed representation of a story, which is then used to answer
questions about the story. The model represents all propo-
sitions in its input layer through 137 localist units coding for
each possible filler of each role (e.g., there is a unit coding
for Albert-agent and another unit coding for Albert-recipient).
To represent a complete proposition, the units coding for the
concept filling each role are activated. For example, a rep-
resentation of the sentence Anne and Gary decided to go to
the restaurant would consist of a vector of 137 units were the
three units coding for Anne-agent, Gary-agent, decided-topic
and restaurant-location are set to 1 and all other units are set
to O (Figure 1A).
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Figure 1: Story Gestalt model.

Seq2seq with attention model The Seg2seqg+Attention
model (Bahdanau et al., 2015, see Figure 2) is a deep neural



network architecture originally designed to solve translation
problems. Typically, the source and target sentences have
different lengths. In general, a Seg2seq model consist of an
encoder network and a decoder network. Both are recurrent
neural networks with their own independent time steps (t for
the encoder and t’ for the decoder in Figure 2B). The encoder
transforms the input sequence into a sequence of fixed-size
vectors and the decoder processes these transformed vectors
to get the output sequence. Two important features this model
are the use of word2vec representations for the input words
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) and an
attention mechanism that allows the model to selectively at-
tend to different parts of the encoders output (Bahdanau et
al., 2015).
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Figure 2: Seq2seq+Attention model.

Simulations

We designed three critical tests for the models. In our first
test, termed concept violation, we trained the models in the
concept restricted condition and then tested them with stories
where the some roles were filled by the restricted concepts.
For example, the concept Lois had never appeared as agent
in any Restaurant story during the model’s training (see Table
1). The model was then tested using a Restaurant story in
which Lois appeared as agent by asking, for example, about
the “tipped” proposition. The correct (role-based) answer was
“Lois tipped waiter big”. Note that, while the model was trained
in stories where Lois appeared as an agent in other locations,
and had been trained to output that someone tipped big with
other agents, it had never been trained to output the exact
proposition “Lois tipped waiter big”.

In our second test, termed correlation violation, we pre-
sented the models trained in the concept unrestricted condi-
tion with stories where we inverted a perfect statistical regu-
larity of the story script. For example, a rule in the Restaurant
script establish that if the restaurant was cheap it was nearby
and if it was expensive it was far away (see Table 1). To cre-
ate a Restaurant correlation violation story, we switched the
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second term of the correlation (e.g., a cheap restaurant that
was far away) and asked abut the “distance” proposition. The
role-based answer was “The restaurant was far away”, even
though all cheap restaurants were close by during training.

In our third test, termed shuffled propositions, we presented
the models trained in the concept unrestricted condition with
stories where we randomized the order of the propositions.
Recall that in our stories there are no repeated topic concepts.
As a direct consequence, a role-based answer to a question
should use the concepts of the proposition corresponding to
each question to fill its roles, ignoring the ordering.

Training

We trained two versions of the SG model, one in 1,000,000
randomly generated concept restricted stories and another in
1,000,000 randomly generated concept unrestricted stories.
We also trained two versions of the Seg2se2+Attention model,
one in 500,000 randomly generated concept restricted stories
and another in 500,000 randomly generated concept unre-
stricted stories. We used the Nadam optimization algorithm
with default learning parameters.

Results

For each of our tests, we created a dataset of stories by gen-
erating 1,000,000 stories and saving all unique ones. Due to
the combinatorics of concepts and scripts, these datasets had
different sizes (baseline and shuffled sentences: 14,652, con-
cept violation: 728, correlation violation: 14,647). For all tests
we compared the proposition generated by the model with the
role-based answer. We coded the answer as correct (with a
value of 1) if the all the concept fillers in the answer corre-
sponded to the concept fillers in the role-based answer and
as a incorrect (with a value of 0) otherwise. Figure 3 shows
the proportion of correct answers per test and model. As can
be seen, both models performed well in our baseline test.
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Figure 3: Results per test and model.

In our concept violation test the SG model almost invari-
ably filled the roles of the restricted concepts with the most
common concepts playing that role during training. For ex-
ample, if it was presented with a story were the role agent-
1 the restricted “Lois”, the model tended to output answers
where the agent-1 was any of the other unrestricted agents
(e.g., “Barbara” or “Clement”). The Seg2seqg+Attention model



performed significantly better at this test. The attention mech-
anism seems to allow this model to apply its word representa-
tions to previously unseen sequences of words.

Both models performed poorly in the correlation violation
test. Such behavior would seem quite unnatural for a human
reader as it would amount to, when presented with a proposi-
tion stating that a restaurant is close by, answering the ques-
tion “where is the restaurant” by stating the restaurant is far
away. Notably, the SG model achieved a higher accuracy than
Seq2seq+Attention model in this test. We suspect that the
same attention mechanism that allows the Seg2seq+Attention
model to pass the concept violation test makes it even more
likely to overfit to a perfect correlation in the dataset.

While our shuffled proposition test affected both mod-
els, the SG model performed significantly better than the
Seq2seq+Attention model. We again hypothesize that the
attention mechanism is the main reason for this differ-
ence in performance. Unfortunately, due to the length of
our stories, taking out the attention mechanism yields the
Seq2seq+Attention model unable to pass our baseline test,
so we could not test our hypothesis directly.

Discussion

We tested the relational processing capabilities of a classic
and a contemporary neural network model of text comprehen-
sion. In three critical tests we varied the statistical properties
of the test stories while keeping their relational structure intact.
Our results show clearly that these models are not using the
relational information of the stories to answer the questions,
but instead they are relying on the statistical regularities of the
training dataset.

Our results are highly consistent with the findings of (Lake &
Baroni, 2018), who found that sequence-to-sequence models
failed at a command-to-action translation task that required
composing the meaning of new commands formed by using
known primitive concepts combined in ways unseen during
training. Truly compositional behavior requires independent
representations of objects and roles that can be bound to-
gether dynamically. A model that dynamically binds roles
to fillers would easily pass our tests by filling the untrained
concepts into the trained roles to answer the questions (see,
Doumas & Hummel, 2005).

Interestingly, there has been a resurgence of interest on
the binding problem in neural networks (Besold et al., 2017).
Moreover, relational learning and reasoning have become
a core topic on deep learning research (for a review, see
Battaglia et al., 2018) with some deep learning architectures
implementing elements traditionally associated with symbolic
processing such as a content-addressable memory (e.g.,
Graves et al.,, 2016). Whether these non-traditional neural
network architectures are capable of relational reasoning re-
mains an open question. Our results suggest, however, that
for a model to successfully account for all aspects of relational
processing, it will need to implement a solution to the binding
problem.
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