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Abstract
Humans readily generalize, applying prior knowledge to
novel situations and stimuli. Advances in machine learn-
ing have begun to approximate and even surpass hu-
man performance, but these systems struggle to gener-
alize what they have learned to untrained situations. We
present a model based on well-established neurocompu-
tational principles that demonstrates human-level gener-
alization. This model is trained to play one video game
(Breakout) and performs one-shot generalization to a new
game (Pong) with different characteristics. The model
generalizes because it learns structured representations
that are functionally symbolic (viz., a role-filler binding
calculus) from unstructured training data. It does so with-
out feedback, and without requiring that structured repre-
sentations are specified a priori. Specifically, the model
uses neural co-activation to discover which characteris-
tics of the input are invariant and to learn relational predi-
cates, and oscillatory regularities in network firing to bind
predicates to arguments. To our knowledge, this is the
first demonstration of human-like generalization in a ma-
chine system that does not assume structured represen-
tations to begin with.
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Introduction
Recently deep neural network (DNN) systems have reached
and even exceeded human levels of performance on a range
of cognitive tasks (for a review see, Hassabis, Kumaran, Sum-
merfield, & Botvinick, 2017). For example, DNNs have learned
to master an impressive number of games (Mnih et al., 2015;
Silver et al., 2017). DNNs are general, in that they can learn to
perform a variety of tasks without a priori background knowl-
edge. Nevertheless, while DNNs readily perform interpolation
(i.e., generalization to untrained items from within the bounds

of the training set), they struggle to perform extrapolation (i.e.,
generalization to items from outside the bounds of the training
set). For example, a network trained to play Breakout must be
completely retrained to play Pong (Mnih et al., 2015).

In contrast, a person is able to quickly catch on to playing
a game like Pong after learning to play a game like Breakout.
After all, Breakout and Pong are very similar: In both games
the objective is to use a paddle to keep a ball in play, and to hit
the ball toward some goal. While in Breakout the ball is played
vertically towards blocks at the top of the screen, and in Pong
the ball is played horizontally towards an opponent paddle.

Accounts of how humans generalize are frequently based
on powerful symbolic languages that include structured re-
lations (or predicates), which can be promiscuously applied
to new arguments (Anderson, 2009; Doumas & Hummel,
2012; Lake, Ullman, Tenenbaum, & Gershman, 2017). In
this view, we have abstract representations like right-of and
above. These representations allow us to characterize differ-
ent domains with the same representations, and generalize
what we have learned about these representations across do-
mains. Structured models, however, face a challenge that is
complementary to that which DNNs face: They characteristi-
cally require the modeler to specify a collection of necessary
representational structures in advance of any actual learning
(e.g, Lake, Salakhutdinov, & Tenenbaum, 2015).

We have previously proposed a neural network model of
how structured representations are instantiated in a biologi-
cally plausible neural system, and how such representations
are learned in the first place (Doumas, Hummel, & Sandhofer,
2008). The model, called DORA, uses unsupervised compar-
ison to discover which characteristics of the input are invari-
ant, and to learn functional predicates; it then applies these
predicates to arguments in a symbolic fashion, using oscil-
latory regularities to dynamically bind predicates and argu-
ments. DORA learns representations that are functionally and
formally symbolic from flat vector data, without feedback, and
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without requiring that structured representations be specified
a priori.

In the following we show that after learning to play one video
game, Breakout, the representations that DORA learns sup-
port generalisation to a completely new game, Pong, in one
shot. Importantly, DORAs learning and reasoning rely inti-
mately on the phase dynamics that carry binding information
in the model.

Model description
DORA is a symbolic-connectionist model descended from
LISA (Hummel & Holyoak, 2003). Its operation is summarized
as follows. (1) DORA starts with representations of differen-
tiated objects encoded as flat feature vectors. (2) Through
a process of analogical mapping, objects are compared (and
co-activated) and their feature vectors are superimposed. (3)
DORA learns a representation of the overlaid pattern through
Hebbian learning. The resulting representation is an encod-
ing of what the compared objects have in common. (4) The
learned representations are bound to objects by systematic
asynchrony of firing, resulting in functional single-place pred-
icates. (5) Co-occurring sets of single-place predicates are
linked to form functional multi-place relations. Below we pro-
vide a conceptual overview of DORA’s operation at a high
level.

Computational macrostructure

DORA has a long-term-memory (LTM; see Fig. 1) composed
of bidirectionally connected layers of units. Units in LTM are
referred to as token units. Token units in the lowest layer of
LTM are bidirectionally connected to a common pool of fea-
ture units. Token units are yoked to inhibitors that integrate
input from their yoked unit and token units in higher layers,
and fire after reaching a threshold. Yoked inhibitors serve the
purpose of implementing phasic firing and refractory periods
in the token units, which are important for implementing dy-
namic binding in the network.
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Figure 1: Macrostructure of the DORA network.

Potentiated sets of token units, or memory sets (dashed
boxes in Fig. 1), correspond to DORA’s working memory.

Memory sets include, the driver, DORAs current focus of at-
tention, and the recipient, DORAs current active memory. To-
ken units in the same layer inhibit one another within, but not
across, memory sets. Activation in the model flows from the
token units in the driver to token units in the recipient and LTM
via the shared pool of feature units.

Neurosymbolic representations
DORA begins with representations of objects coded as flat
feature vectors. For example, DORA might represent a ball
with a token unit connected to a set of features (see Fig. 2a).
In terms of cortical computation, feature nodes can be thought
of as aggregate units, perceptual representations, or activa-
tion states over networks.
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Figure 2: Representations in DORA.

DORA eventually learns representations of a form we call
LISAese (Hummel & Holyoak, 2003). Full propositions in
LISAese are encoded across layers of units (Fig. 2b). For
ease of exposition we label the layers. At the bottom of the
hierarchy, are feature units. The layer of token units con-
nected to the features are POs (for predicate-object), followed
by RBs (for role-binding) and Ps (for proposition) units. Fea-
ture units code for the properties of represented instances in a
distributed manner. POs, conjunctively link collections of fea-
ture units encoding objects (and, after learning, predicates).
RBs conjunctively link POs into role-filler pairs. Ps conjunc-
tively link RBs to form multi-place relational structures. As an
example, a LISAese representation of the relational proposi-
tion bigger (ball, cup) is depicted in Fig. 2b.
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Figure 3: Binding in DORA.

To proccess a proposition, role-filler bindings must be rep-
resented dynamically on the units that maintain role-filler in-
dependence (i.e., POs and feature units; see Doumas et al.,
2008). In DORA, roles are dynamically bound to their fillers by
systematic asynchrony of firing. When laterally inhibitive units
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Figure 4: Predicate learning in context.

are linked by a conjunctive node, they will naturally oscillate
out of synchrony and in direct sequence when their conjunc-
tive unit becomes active. This emergent oscillatory pattern
is an effective binding signal. For example, as a proposition
in the driver becomes active, bound roles and objects fire in
direct sequence. (see Fig. 3a-d).

Processing

DORA is a settling network. It starts in some state, such as
a set of units in driver (e.g., chosen at random from LTM, or
based on DORAs current perceptual state such as a video-
game screen shot). Token units in the driver compete (via lat-
eral inhibition) to become active, and activation flows to token
units in the recipient and LTM via shared feature units. DORA
eventually settles into some state (e.g., with some units ac-
tive in driver and recipient). Due to the refraction of nodes and
yoked inhibitors, this state will eventually become upset ad the
proccess will start again.

Starting with some units in the driver, DORA cycles through
five operations: retrieving, mapping, predicate learning, re-
fining, and generalising. During retrieval, active token units in
the driver pass activation to tokens in LTM via shared features.
After all tokens in the driver have fired, DORA retrieves (i.e.,
potentiates) units from LTM into the recipient using the Luce
choice rule.

During mapping, DORA discovers structural correspon-
dences between token units in the driver and recipient. As to-
ken units in the driver become active, token units in the recip-
ient compete (via lateral inhibition) to become active. DORA
learns mapping connections (via a modified Hebbian learning
rule) between simultaneously active units in the same layer
across driver and recipient.

During predicate learning, DORA learns functional predi-
cate representations of, first, single-place, and, subsequently,
multi-place predicate. As token units in the driver become
active, they activate corresponding token units in the recipi-
ent (through shared features and mapping connections). In
response, DORA recruits an unconnected token unit in re-
sponse to active units in the layer directly below. Connec-
tions between units are updated by Hebbian learning. As a
result, recruited POs learn connections to the featural overlap
of mapped objects, and recruited RBs and Ps learn conjunc-
tive encodings of co-occurring lower-level tokens. The result-

ing collections of units function like single-place predicates,
and eventually multi-place relations (as in Fig. 3).

During refinement, DORA learns schematised representa-
tions of mapped items in driver and recipient. As token units
in the driver become active, they activate corresponding units
in the recipient (through shared features and mapping con-
nections). Token units in LTM are recruited to match active
mapped units in the driver. Just as with predicate learning,
connection weights between units are updated by Hebbian
learning. The result is a refined representation in LTM of the
mapped representations in driver and recipient.

During generalisation, DORA performs relational general-
isation. When unmapped token units in the driver become
active, token units are recruited in the recipient. Connection
weights between units are updated by Hebbian learning. The
result is that unmapped token units (and thus structure) from
the driver are essentially copied into the recipient.

Model in context

DORA is a model of representation learning. It assumes that
objects are differentiated and makes no strong claims about
how choices between available options (i.e., moves in a video
game) are made. As such, we situated DORAs predicate
learning algorithm between a visual pre-processor, and tab-
ular Q-learning (Watkins, 1989) (see Fig. 4). The visual pre-
processor served to differentiate objects, and the tabular Q-
learning allowed DORA to learn associations between repre-
sentational states and move options in a game.

We tested two versions of the visual pre-processor. The
first was a pre-trained mask R-CNN (He, Gkioxari, Dollár, &
Girshick, 2017), delivering object outlines and delimiting rect-
angles. The second performed the exact same task but used
edge detection (via local contrast) with an inbuilt bias such
that any enclosed edges were treated as a single object. As
both networks behave identically for the present purposes we
used the later becasuse is computationally simpler and faster.

Simulations
We compared (1) an implementation of DORA with Q-learning
against (2) DQN; (3) DQN with the same pre-processed inputs
used by DORA; (4) a supervised deep neural network (DNN)
with the same pre-processed inputs used by DORA with fixed
frame skipping; (5) a supervised DNN with the same pre-
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processed inputs used by DORA with random frame skipping;
(6) Humans (two Breakout and Pong novices). We trained
all these systems to play one videogame (Breakout), and
then tested their ability to generalize to a different videogame
(Pong) without any explicit training. Finally, we evaluated
these systems’ ability to switch back to playing the original
game, after time spent learning to play the second.

For the first 250 games of Breakout, DORA made ran-
dom moves, generating game states from which it learned
structured representations in an unsupervised manner as de-
scribed above. DORA successfully learned predicate repre-
sentations encoding to instances such as more-y (object1, ob-
ject2) and more-x(object1, object2). DORA then attempted
to learn to play Breakout using the representations that it had
learned during the first 250 games to represent the current
game screen and then made a response. Associations be-
tween these learned representations and successful moves
were learned via tabular Q-learning.

Fig. 5a shows the performance of all networks on Breakout
as an average score of the last 100 games played, and a high
score. All systems performed quite well, reaching levels of
performance that matched or exceeded human participants.
As would be expected, DORA took far fewer games to learn
to play Breakout than any of the other networks (1,000 vs.
10,000,000 games for DORA and DQN, respectively).
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Figure 5: Predicate learning in context.

We then tested the capacity of the networks to play a new
videogame, Pong. DORA had learned to play Breakout by
learning associations between relational configurations and
actions. During its first game of Pong, DORA represented the
game state using the relations it had learned playing Breakout.
DORA discovered a correspondence between the action sets
in the two games: particularly, more-y/less-y of the paddle (the
paddle moves up and down) in Pong and more-x/less-x of the
paddle (the paddle moves horizontally) in Breakout. This cor-
respondence allowed DORA to infer via relational generaliza-
tion the relational configurations that reward specific moves in
Pong. For example, just as more-x(ball, paddle) tends to re-
ward a more-x move of the paddle in Breakout, more-y(ball,
paddle) rewards a more-y move of the paddle in Pong. Fig.
5b shows the performance of the human players and the net-

works on the first game of Pong after training on Breakout
and the average performance over the first 100 games play-
ing Pong. Like a human player, DORA performed at a high
level on Pong on a single exposure to the game and contin-
ued to play Pong at a high level. By contrast, all other networks
showed poor performance –which is unsurprising given previ-
ous results using DNNs and transferring to different contexts.

General Discussion
We have shown that a machine system can perform extrapo-
latory generalization through predicate learning. Specifically,
DORA used predicate learning to discover symbolic represen-
tations from video game screen shots without feedback, and
without assuming any structured representations a priori. Cru-
cially, the predicate representations that DORA learned al-
lowed it to extrapolate its knowledge to untrained situations.
To our knowledge, this is the first demonstration of human-
like generalization, or extrapolation, in a machine system that
does not assume structured representations to begin with. Im-
portantly, the solution makes use of well-established neuro-
computational principles.
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