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Abstract

Visual reasoning is a long-term goal of vision research.
In the last decade, several works have attempted to ap-
ply deep neural networks (DNNs) to the task of learn-
ing visual relations from images, with modest results in
terms of the generalization of the relations learned. In
recent years, several innovations in DNNs have been de-
veloped in order to enable learning abstract relation from
images. In this work, we systematically evaluate a se-
ries of DNNs that integrate mechanism such as slot at-
tention, recurrently guided attention, and external mem-
ory, in the simplest possible visual reasoning task: de-
ciding whether two objects are the same or different. We
found that, although some models performed better than
others in generalizing the same-different relation to spe-
cific types of images, ho model was able to generalize
this relation across the board. We conclude that abstract
visual reasoning remains largely an unresolved challenge
for DNNs.
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Introduction

Detecting relations is one of the fundamental operations of
the visual system. This allows us to form a coherent repre-
sentation of the environment as sets of relations between ob-
jects (Vo, Boettcher, & Draschkow, 2019). It is also the basis
of robust object recognition, because representing an object
as a set of relations between parts frees us from recognizing
it solely on the basis of its superficial features (Biederman,
1987). Furthermore, representing relations between entities
forms the basis of the kind of reasoning abilities that set us
apart from other species (Gentner, Shao, Simms, & Hespos,
2021). Given this predominant role across different forms of
visual processing, several researchers have attempted to ap-
ply deep neural networks to visual reasoning, in particular to
the same-different task (i.e., classifying an image with two ob-
jects as an example of the categories "same” or “different”).
This previous research found that, in contrast with earlier ma-
chine learning models, convolutional neural networks (CNNs)
can learn to classify images with abstract shapes as same or
different (e.g., Messina, Amato, Carrara, Gennaro, & Falchi,
2021; Funke et al., 2021). However, Puebla and Bowers
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Figure 1: Example images of all datasets tested.

(2022) showed that the representations learned by these mod-
els are highly specific: when trained in task #1 of the synthetic
visual reasoning test (SVRT, Fleuret et al., 2011, see Original
condition Figure 1), CNNs tended to classify correctly images
that were superficially similar to the ones they were trained on
(e.g., Irregular or Regular conditions in Figure 1) and misclas-
sify images that illustrated the same relation but were more
superficially dissimilar (e.g., Lines or Arrows conditions). In
the meantime, a number of new DNNs have introduced ar-
chitectural innovations targeted at achieving relational visual
relational reasoning. In this work, we test relational general-
ization of the same-different task on these models.

Models

ResNet50 (He, Zhang, Ren, & Sun, 2016) We included this
model as a baseline deep CNN.
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Slot Attention (Locatello et al., 2020) This model segre-
gates objects in an image through a key-value attention mech-
anism that asigns different parts of the image to competing
slots.

Recurrent vision transformer (RViT, Messina, Amato, Car-
rara, Gennaro, & Falchi, 2022) This model applies a stan-
dard vision transformer encoder recurrently, that is the model
takes as input its own output, for a number of 4 processing
steps.

Emergent symbol binding network (ESBN, Webb, Sinha,
& Cohen, 2021) This model consist of a recurrent neural
network augmented with a key-value external memory. This
model aims to bind its memory values (direct representation
of the input) and keys (inferred representation of the input’s
role in the sequence).

Guided Attention Model for (visual) Reasoning (GAMR,
Vaishnav & Serre, 2023) This model is composed of three
modules. An encoder builds a representation of the input. A
recurrent controller guides an attention mechanism to select
relevant object representations and write them into an external
memory. A graph neural network module computes relations
between the objects stored in the external memory.

Object-Centric Recurrent Attention (OCRA, Adeli, Ahn, &
Zelinsky, 2022) This model consist of a recurrent encoder
that controls an attention window that trades of the area it cov-
ers by its resolution. At the same time, a recurrent decoder
control a write window that modifies a reconstruction output at
each time step. The encoder feeds a two-layer capsule neural
network that predicts a class label.

Methods

We trained 10 runs of all the models in task #1 of SVRT until
reaching a validation accuracy of approximately 99%. This
dataset consist of 28,000 128 x 128 RGB images. We tested
all the models in all 14 datasets illustrated in Figure 1 (5,600
images per dataset), with the exception that OCRA was not
tested on the Random colors dataset since this model takes
only grey scale images as an input.

Results and discussion

As can be seen in Figure 1, all models achieved high accuracy
in the test split of task #1 of SVRT except for the ESBN model,
which performed at chance in all datasets. Further analysis
showed that this model can learn the same-different task only
when the objects (presented individually in a sequence of two
images) are centered in the image, which severely questions
Webb et al. (2021)’s conclusions regarding the relational rea-
soning capabilities of the model.

Furthermore, Slot Attention, GAMR and OCRA tended to
show better generalization on the datasets that were harder
for ResNet50. However, no single model achieved high levels
of accuracy across all the test datasets, which is what woukd
be expected if a model learned an abstract representation of
the relations "same” and "different”.
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Figure 2: Mean accuracy on 10 runs of each model per con-
dition. Error bars are standard errors of the mean.
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